Pau Amaro-Seoane

http://www.aei.mpg.de/~pau

Max-Planck Institut fuer Gravitationsphysik (Albert Einstein-Institute)

Wednesday June 21, 2006 - Dynamics around a central BH

Collaborators

- (1) Marc Freitag (IoA, Cambridge) -wine-
- (2) L.C. Titan, 32 (micro) Grapes boards nodes (ARI, Heidelberg) -flops-

1.- Scenario

Physical scenario

Physical scenario

Crash of galaxies NGC4038 and NGC4039

- Hierarchical models → formation structures, down to galaxies
- Galaxies at least one merger
- \bullet A famous good example \rightarrow The Antennæ
- Young massive star clusters form in such perturbed-gas- rich enviroments (HST)
- Gas piles up in the centre → collision \rightarrow grav unstabil. \rightarrow SF
- SF simul. suggest result collision of two clouds → binary stel cluster

Zomming in: Star cluster complex, a cluster of clusters

Whitmore et al (1999)

Stephan's Quintet

Formation of W3 in NGC7252 as prod of clust mergers

75 stell clusters, red dots = cores

2.- Merger of clusters

howto merge

How to make two clusters merge

- NBODY4 + GRAPE6 hardware
 - actually micro = single PCI cards, peaking at 130 Gflops; real DR-GRAPEs = 2 Petaflops; ~ 2008
- Up to 130k \mathcal{N}_{2}
- The most accurate thing we can do: Direct summation NBODY (purely Newtonian)
- Relativistic situations?

$$\underline{F} = \underbrace{F_0}_{\text{Newt.}} + \underbrace{c^{-2}\underline{F_2}}_{1PN} + \underbrace{c^{-4}\underline{F_4}}_{2PN} + \underbrace{c^{-5}\underline{F_5}}_{2.5PN} + \mathcal{O}(c^{-6}$$

How to make two clusters merge

NBODY4 + GRAPE6 hardware

actually micro = single PCI cards, peaking at 130 Gflops; real DR-GRAPEs = 2 Petaflops; ~ 2008

- Up to 130k \mathcal{N}_{\star}
- The most accurate thing we can do: Direct summation NBODY (purely Newtonian)
- Relativistic situations?

$$\underline{F} = \underbrace{\underline{F}_0}_{\text{Newt.}} + \underbrace{c^{-2}\underline{F}_2}_{1PN} + \underbrace{c^{-4}\underline{F}_4}_{2PN} + \underbrace{c^{-5}\underline{F}_5}_{2.5PN} + \mathcal{O}(c^{-6})$$

How to make two clusters merge

- The most accurate thing we can do: Direct summation NBODY (purely Newtonian)

$$\underline{F} = \underbrace{\underline{F}_0}_{\text{Newt.}} + \underbrace{c^{-2}\underline{F}_2}_{1PN} + \underbrace{c^{-4}\underline{F}_4}_{2PN} + \underbrace{c^{-5}\underline{F}_5}_{2.5PN} + \mathcal{O}(c^{-6})$$

How to make two clusters merge

- Relativistic situations?

$$\underline{F} = \underbrace{F_0}_{\text{Newt.}} + \underbrace{c^{-2}\underline{F_2}}_{1\mathcal{PN}} + \underbrace{c^{-4}\underline{F_4}}_{2\mathcal{PN}} + \underbrace{c^{-5}\underline{F_5}}_{2.5\mathcal{PN}} + \mathcal{O}(c^{-6})$$
periastron shift grav. rad.

howto merge

Mergers of clusters

Parabolic orbit — Pericentre distance 2 pc — rel. vel. at pericenter of $23.3 {\rm km \ s}^{-1}$ — Initial centre separation 2 pc — Initial rel. vel. $6.62 \mathrm{km \ s^{-1}}$ — $\mathcal{M}_{\mathrm{cl}} = 6.3 \times 10^4 \mathrm{M}_{\odot}$ — $\mathcal{N}_{\mathrm{part}} = 6.3 \times 10^4$ — King models

Parameters evolution

Inverse of the semi-major

GW inspiral à la Peters and Matthews

$$\begin{split} t_{\mathrm{GR}} &= 1.16\,\mathrm{Gyr} \left[\frac{a}{1\,\mathrm{mpc}}\right]^4 \left[\frac{\mathcal{M}_1 \bullet \mathcal{M}_2 \bullet (\mathcal{M}_1 \bullet + \mathcal{M}_2 \bullet)}{(10^6 \mathrm{M}_{\odot})^3}\right]^{-1} \frac{1}{F(e)}, \\ F(e) &= (1-e^2)^{-7/2} \left(1+73/24e^2+37/96e^4\right) \end{split}$$

BTW...a few words on triaxiality

System **oblate**: \sim no triaxiality \rightarrow no boxy orbits \rightarrow not enough centrophilic orbits \rightarrow hang-up danger for gal. nucl. (here we have low $\mathcal{N}_{\star}
ightarrow t_{
m relax}/t_{
m dyn}$ small)

3.- Implications for LISA/BBO

4 small LISAs

 BBO: Proposed space-born GW mission background early Universe, follow-on to LISA

Possible implications for LISA (and the BBO)

Phinney et al., 2003, C. Ungarelli et al., 2005

- Of all waves GWs interact the least: Undisturbed info from earliest moments Universe
- GWs escaped on a journey to us from age of 10^{-35} sec
- Design target: Detect primordial GWs in $10^{-1} < f < 1$ Hz
- At longer periods confus foregrd hopelessly large
- LISA not suitable; complet. covered by foreground WD²
- At periods of 0.1-10 sec opportunity; primary source of foregrd NS² -few enough, can be identified and removed-

Cutler & Harms 05

BBO parameters

Four constell, three satel (4 LISAs) Heliocentric orbits @1AU from Sun 2 constell David star 2 ahead and behind $2\pi/3$ rad

	Symbol	Value
Laser power	P	300 W
Mirror diameter	D	3.5 m
Optical efficiency	ϵ	0.3
Arm length	L	5 ⋅ 10 ⁷ m
Wavelength of laser light	λ	$0.5\mu\mathrm{m}$
Acceleration noise	$\sqrt{S_{\rm acc}}$	$3 \cdot 10^{-17} \text{ m/(s}^2 \sqrt{\text{Hz}})$

BBO and the Neutron-Star-Binary Subtraction Problem

Curt Cutler1 and Ian Harms2

¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 ²Max-Planck-Institut für Gravitationsphysik and Universität Hannover, Callinstraße 38, 30167 Hannover, Germany (Dated: November 22, 2005)

The Big Bang Observer (BBO) is a proposed space-based gravitational-wave (GW) mission designed primarily to search for an inflation-generated GW background in the frequency range ~ 10-1 Hz - 1 Hz. The major astrophysical foreground in this range is gravitational radiation from inspiralling compact binaries. This foreground is expected to be much larger than the inflation-generated background, so to accomplish its main

LISA/BBO sensitivity curve et al.

Coal $10^2 - 10^4 \mathcal{M}_{\bullet}$ last year of insp (30D, 1D, 1H) @1Gpc

BBO, LISA

green dashed = inst noise + conf (WD2)

orange dashed = NS^2 foreground

How many of such events?

→ Source for LISA! / Foreground for BBO?

The moral of the story

IMBHs could form in glob clust, located in star complexes

- They will very probably collide

- IMBHs could form in glob clust, located in star complexes
- They will very probably collide
- NBODY simulations + PN corrections, how many merge?
 param dist?
- Estimate rates → Where in the LISA/BBO window? How significant?
- Could it be a source/foreground for LISA/BBO?

- IMBHs could form in glob clust, located in star complexes
- They will very probably collide
- NBODY simulations + PN corrections, how many merge? param dist?
- Estimate rates → Where in the LISA/BBO window? How significant?
- Could it be a source/foreground for LISA/BBO?

IMBHs could form in glob clust, located in star complexes

- They will very probably collide
- NBODY simulations + PN corrections, how many merge? param dist?
- Estimate rates → Where in the LISA/BBO window? How significant?
- Could it be a source/foreground for LISA/BBO?

